Heavy-Tailed Distributions with Package fitHeavyTail

Prof. Daniel P. Palomar

Hong Kong University of Science and Technology (HKUST)

R/Finance 2023 University of Illinois at Chicago (UIC), Chicago, IL, USA 19-20 May 2023

Package fitHeavyTail

• R package fitHeavyTail: Mean and Covariance Matrix Estimation under Heavy Tails

CRAN 0.2.0 downloads 439/month downloads 21K

- History:
 - Created in 2017.
 - First published in CRAN in 2019.
 - Latest version in 2023.
- A must for portfolio optimization with multiple assets.
- Authors and collaborators: Rui Zhou, Xiwen Wang, Esa Ollila, Frederic Pascal, and Daniel Palomar

2/15

Portfolio optimization needs Σ

- ullet Portfolio formulations typically require the $N \times N$ covariance matrix Σ of the N assets.
- There are many different formulations to optimize the **portfolio** vector **w**.
- Markowitz proposed in his seminar 1952 paper (Markowitz, 1952) a trade-off between the portfolio expected return and its risk measured by the variance $\mathbf{w}^T \Sigma \mathbf{w}$:

$$\label{eq:maximize} \begin{aligned} & \underset{\boldsymbol{w}}{\text{maximize}} & & \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\mu} - \lambda \boldsymbol{w}^{\mathsf{T}}\boldsymbol{\Sigma}\boldsymbol{w} \\ & \text{subject to} & & \boldsymbol{w} \in \mathcal{W}, \end{aligned}$$

where W denotes some portfolio constraints such as $\mathbf{w} \geq \mathbf{0}$ and $\mathbf{1}^T \mathbf{w} = 1$.

Another popular formulation is the risk parity portfolio:¹

minimize
$$\sum_{i,j=1}^{N} (w_i(\Sigma \mathbf{w})_i - w_j(\Sigma \mathbf{w})_j)^2$$
 subject to $\mathbf{w} \in \mathcal{W}$.

D. Palomar (HKUST) Package fitHeavyTail 3 / 15

¹R package riskParityPortfolio and Python package riskparity.py.

We could use the sample covariance matrix

Sample covariance matrix:

$$\hat{\Sigma} = \frac{1}{T-1} \sum_{t=1}^{T} (\mathbf{x}_t - \hat{\boldsymbol{\mu}}) (\mathbf{x}_t - \hat{\boldsymbol{\mu}})^{\mathsf{T}}.$$

where x_t contains the returns of the N assets at period t and $\hat{\mu}$ is an estimation of the mean vector.

- Good properties of the sample covariance matrix:
 - ullet unbiased estimator: $\mathrm{E}[\hat{oldsymbol{\Sigma}}] = oldsymbol{\Sigma}$
 - ullet consistent estimator: $\lim_{T o \infty} \hat{\Sigma} = \Sigma$
 - **optimal** from the perspective of Gaussian maximum likelihood estimation:

$$\min_{m{\mu}, m{\Sigma}} \log \, \det(m{\Sigma}) + rac{1}{T} \sum_{t=1}^T (m{x}_t - m{\mu})^{\mathsf{T}} m{\Sigma}^{-1} (m{x}_t - m{\mu}).$$

D. Palomar (HKUST)

But financial data is not Gaussian

- One of the well-known stylized facts of financial data is the heavy-tailed distribution (not Gaussian).
- Histogram of S&P 500 returns at different frequencies (with Gaussian fit):

We really need a heavy-tailed estimator

- We cannot ignore the need for a proper estimator under heavy tails.
- Maximum likelihood estimator under the Student's t distribution:

But it does not have a closed-form solution.

D. Palomar (HKUST) Package fitHeavyTail

6 / 15

Iterative algorithms

• The solution is in the form of fixed-point equations:

$$egin{aligned} oldsymbol{\mu} &= rac{rac{1}{T} \sum_{t=1}^{T} w_t(oldsymbol{\mu}, oldsymbol{\Sigma}) imes oldsymbol{x}_t}{rac{1}{T} \sum_{t=1}^{T} w_t(oldsymbol{\mu}, oldsymbol{\Sigma})} \ oldsymbol{\Sigma} &= rac{1}{T} \sum_{t=1}^{T} w_t(oldsymbol{\mu}, oldsymbol{\Sigma}) imes (oldsymbol{x}_t - oldsymbol{\mu}) (oldsymbol{x}_t - oldsymbol{\mu})^\mathsf{T}, \end{aligned}$$

where
$$w_t(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{\nu + N}{\nu + (\boldsymbol{x}_t - \boldsymbol{\mu})^\mathsf{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x}_t - \boldsymbol{\mu})}.$$

- Iterative algorithms to compute these fixed-point equations based on the majorization-minimization (MM) framework (Sun et al., 2017) are implemented in the package fitHeavyTail:
 - function fit_Tyler(): (Sun et al., 2014)
 - function fit_Cauchy(): (Sun et al., 2015)
 - function fit_mvt(): (Liu and Rubin, 1995; Liu et al., 1998), (Ollila et al., 2021), and (Pascal et al., 2021)

7 / 15

• function fit_mvst(): (Aas and Haff, 2006)

D. Palomar (HKUST) Package fitHeavyTail

Gaussian versus heavy-tailed estimation

Shape of covariance matrices

How to use package fitHeavyTail

• Generate synthetic data:

```
library(mvtnorm) # package for multivariate t distribution
N <- 10 # number of variables
T <- 80 # number of observations
nu <- 4 # degrees of freedom for heavy tails
mu \leftarrow rep(0, N)
# create covariance matrix with factor model structure
set seed (42)
U \leftarrow t(rmvnorm(n = round(0.3*N), sigma = 0.1*diag(N)))
Sigma cov \leftarrow U %*% t(U) + diag(N)
Sigma scatter <- (nu-2)/nu * Sigma cov
# generate TxN data matrix
X <- rmvt(n = T, delta = mu, sigma = Sigma scatter, df = nu)
```

9/15

How to use package fitHeavyTail

• Tradidional sample estimators:

```
mu_sm <- colMeans(X)
Sigma_scm <- cov(X)</pre>
```

• Heavy-tailed estimators:

```
library(fitHeavyTail)
fitted <- fit_mvt(X)</pre>
```

```
names(fitted)
```

```
R>> [1] "mu" "scatter" "nu" "mean"  
R>> [5] "cov" "converged" "num_iterations" "cpu_time"
```

How to use package fitHeavyTail

• Compare errors in μ (half!):

```
sum((mu_sm - mu)^2)
sum((fitted$mu - mu)^2)
```

```
R>> [1] 0.2857323
R>> [1] 0.1487845
```

• Compare errors in Σ (half!):

```
sum((Sigma_scm - Sigma_cov)^2)
sum((fitted$cov - Sigma_cov)^2)
```

```
R>> [1] 5.861138
R>> [1] 3.031499
```

Comparison with other packages

• The methods provided by the package fitHeavyTail (see the ellipse) clearly offer the best trade-off of estimation error and CPU time.

Thanks

For more information visit:

https://www.danielppalomar.com

https://github.com/dppalomar

https://www.youtube.com/danielpalomar

- Aas, K., and Haff, I. H. (2006). The generalized hyperbolic skew student'st-distribution. *Journal of Financial Econometrics*, *4*(2), 275–309.
- Liu, C., and Rubin, D. B. (1995). ML estimation of the t-distribution using EM and its extensions, ECM and ECME. *Statistica Sinica*, 5(1), 19–39.
- Liu, C., Rubin, D. B., and Ying Nian Wu, and. (1998). Parameter expansion to accelerate EM: The PX-EM algorithm. *Biometrika*, 85(4), 755–770.
- Markowitz, H. (1952). Portfolio selection. J. Financ., 7(1), 77-91.
- Ollila, E., Palomar, D. P., and Pascal, F. (2021). Shrinking the eigenvalues of M-estimators of covariance matrix. *IEEE Transactions on Signal Processing*, *69*, 256–269.
- Pascal, F., Ollila, E., and Palomar, D. P. (2021). Improved estimation of the degree of freedom parameter of multivariate t-distribution. In *Proc. European signal processing conference (EUSIPCO)*. Dublin, Ireland.
- Sun, Y., Babu, P., and Palomar, D. P. (2014). Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms. *IEEE Trans. Signal Processing*, *62*(19), 5143–5156.

References II

- Sun, Y., Babu, P., and Palomar, D. P. (2015). Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions. *IEEE Trans. Signal Processing*, 63(12), 3096–3109.
- Sun, Y., Babu, P., and Palomar, D. P. (2017). Majorization-minimization algorithms in signal processing, communications, and machine learning. *IEEE Transactions on Signal Processing*, 65(3), 794–816.